手机浏览器扫描二维码访问
老林:“没有百年。”
“啊?”
“毕竟我也是,我们没差那么多。”
林朝夕:“……”
——
那天晚上,林朝夕破天荒押着老林,要跟在他身边学习。
距她离开这个世界还有100天。
在这100天内,老林不仅要完成整个错误的论证,还要推翻自己的论证,并且要在此之上有全新的发现。
就算她有草莓世界老林的全部研究结果,但也不能把东西直接抄下来交给老林。
究竟要怎么办,她必须在老林身边,试探世界规则、找到正确方法,和解题一样。
老林对于她跟着倒没什么意见,当天晚上,林朝夕就把自己的回家作业搬进老林书房。
不过,老林同志对她的专业素养表示了怀疑:“你图论看了几页?”
林朝夕直接起身,走到老林的书架上,抽出第一版的《图论及其应用》,说:“都看完了。”
“嚯,了不起。”
老林同志给她点了个赞,“书后的习题呢?”
“只做了一半,有很多不懂的。”
“那爸爸给你讲讲?”
“不行,你忙你的,我有不会的自己学,等你空了你再教我。”
林朝夕很干脆拒绝,抱着书坐到自己的小桌上。
如果打开百度百科搜索图论,第一句话大概是这样的
——众所周知,图论起源于一个非常经典的问题,柯尼斯堡(konigsberg)问题。
柯尼斯堡这个词当然不那么“众所周知”,但如果换成它的另一个译名——七桥问题。就变成很多学生在小学奥数中都接触过的内容了。
一般它出现在小学奥数书“小知识”栏目中,配图是被一条河分隔开的a、b两地,河上有c、d两座小岛,有7座桥梁把岛屿同陆地联系起来。
问题如下:一个人要如何从a、b、c、d中任一块出发,恰好通过每座桥一次,再回到出发点?
当时有很多人都尝试过,发现似乎没办法做到这点。但这就是数学,无论可能或者不可能,都需要确切的证明。
于是,图论诞生了。
1736年,欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文。将岛与河岸抽象为顶点,桥变成连接顶点的边,证明一次走完7桥且不重复这是不可能的。
在完成解答的同时,欧拉开创了数学的一个新的分支——图论与几何拓扑。
这就是数学,你永远不知道,在解决一个看似无意义的问题背后,会藏着有怎样的未来。
林朝夕又翻完一章的内容,心中感慨。
其实她深知,她在这个领域更深入的地方,帮不上什么忙。但对她来说,她的命运好像不由自主地与这个问题纠缠在一起。
多了解一点,深入地了解一点,或许能在某一个时刻,对老林有所帮助。
书桌前的老林同志还在埋头,安静作着他自己的演算。
这天晚上的学习……
林朝夕并没对老林有什么帮助,不仅如此,老林同志还看了下她的习题本,抽空给她讲了个证明。
他们又聊了会儿七桥问题,老林说正好,他小学奥数班正好要上到这个内容,让她周末给小朋友们讲讲。
于是林朝夕莫名其妙开始想起了这节课要怎么上。
半夜的时候,林朝夕躺在床上,看着蚊帐。
玫瑰挞 刺青 咬上你指尖 四界柳楚传 折月亮 兼职无常后我红了 酸梅 剑寻千山 暗格里的秘密 桃枝气泡 他最野了 星汉灿烂,幸甚至哉 穿成万人迷的炮灰竹马 不断作死后我成了白月光 为夫曾是龙傲天 余生有涯 吻痣 标记我一下 至尊剑帝无错字精校版 穿进万人迷文的我人设崩了
一个本来庸才的学生,在一次奇遇后,居然成为傲世天才,他发现自己的身世居然是而后面还有天大的阴谋...
穷小子楚帅,先赚了一个极品级二奶,却原来是间谍精英,然后,一个大陆女警官凌小杰好有暗恋他,可是,穷小子还有一个比鸟齐飞的原配初恋,还有一个女朋友的死党小魔女蓝菲,还有几乎是后宫佳丽如云,不过,一个个美眉都有好神秘的身份,你中有我,我中有你...
石焱携功法修改器重生入九域玄幻世界,人族挣扎求生。九域世界以游戏形式发售面世。当有一日,两界融合,妖魔肆虐而来。石焱内测进入九域世界,这一日,游戏尚未发售,玩家尚未进入,妖魔尚未影响书友Q群371073565...
人无耻则无畏,人至贱则无敌!谁说盖世枭雄必需得霸气十足?谁说无耻贱圣踏不得七彩祥云?谁说此般少年不能争天命,演修罗,替天行道?(QQ书友群313310371)...
一睁眼回到六零年,上一世是孤儿的明暖这一世拥有了父母家人,在成长的过程中,还有一个他,青梅竹马,咋这么腹黑呢!...
蜀山有玄门正宗,一家独大。主角修炼的是魔门正宗。群号紫云宫22117110。...